Problem set 6

Due date: 18th March

(Submit any five)

Exercise 52. Let X_n , X be random variables on a common probability space.

(1) If $X_n \xrightarrow{P} X$, show that some subsequence $X_{n_k} \xrightarrow{a.s.} X$.

(2) If every subsequence of X_n has a further subsequence that converges almost surely to X, show that $X_n \xrightarrow{P} X$.

Exercise 53. For \mathbb{R}^d -valued random vectors X_n, X , we say that $X_n \xrightarrow{P} X$ if $\mathbf{P}(||X_n - X|| > \delta) \to 0$ for any $\delta > 0$ (here you may take $|| \cdot ||$ to denote the usual norm, but any norm on \mathbb{R}^d gives the same definition).

- (1) If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, show that $(X_n, Y_n) \xrightarrow{P} (X, Y)$.
- (2) If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, show that $X_n + Y_n \xrightarrow{P} X + Y$ and $X_n Y_n \xrightarrow{P} XY$. [Hint: Show more generally that $f(X_n, Y_n) \xrightarrow{P} f(X, Y)$ for any continuous function *f* by using the previous problem for random vectors].
- **Exercise 54.** (1) If X_n, Y_n are independent random variables on the same probability space and $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$, then $(X_n, Y_n) \xrightarrow{d} (U, V)$ where $U \stackrel{d}{=} X, V \stackrel{d}{=} Y$ and U, V are independent. (2) If $X_n \xrightarrow{d} X$ and $Y_n - X_n \xrightarrow{P} 0$, then show that $Y_n \xrightarrow{d} X$.

Exercise 55. Show that the sequence X_n is tight if and only if $c_n X_n \xrightarrow{P} 0$ whenever $c_n \to 0$.

Exercise 56. Suppose X_n are i.i.d with $\mathbf{E}[|X_1|^4] < \infty$. Show that there is some constant *C* (depending on the distribution of X_1) such that $\mathbf{P}(|n^{-1}S_n - \mathbf{E}[X_1]| > \delta) \le Cn^{-2}$. (What is your guess if we assume $\mathbf{E}[|X_1|^6] < \infty$? You don't need to show this in the homework).

- **Exercise 57.** (1) (Skorokhod's representation theorem) If $X_n \xrightarrow{d} X$, then show that there is a probability space with random variables Y_n, Y such that $Y_n \stackrel{d}{=} X_n$ and $Y \stackrel{d}{=} X$ and $Y_n \xrightarrow{a.s.} Y$. [Hint: Try to construct Y_n, Y on the canonical probability space ([0, 1], \mathcal{B}, \mathbf{m})]
 - (2) If $X_n \xrightarrow{d} X$, and $f : \mathbb{R} \to \mathbb{R}$ is continuous, show that $f(X_n) \xrightarrow{d} f(X)$. [Hint: Use the first part]

Exercise 58. Suppose X_i are i.i.d with the Cauchy distribution (density $\pi^{-1}(1+x^2)^{-1}$ on \mathbb{R}). Note that X_1 is not integrable. Then, show that $\frac{S_n}{n}$ does not converge in probability to any constant. [Hint: Try to find the probability $\mathbf{P}(X_1 > t)$, and then use it].